Jonathan CHETRIT
Subthalamic nucleus D5 receptors: role in the pathophysiology and therapy of Parkinson’s disease
décembre 2009 Directeur(s) de thèse : Abdelhamid BENAZZOUZ Résumé de thèseBurst-firing in the subthalamic nucleus (STN) is a hallmark of Parkinson’s disease. Previous in vitro studies have raised the hypothesis of the involvement of dopamine D5 receptor (D5R) in the genesis of this pathological activity.Here we have shown that D5R exert a constitutive activity in vivo, which can be blocked by local application of α-flupentixol. Blockade of this intrinsic activity improved locomotor behaviour in an animal model of Parkinson’s disease and alleviate burst-firing of STN neurons both in vitro and in vivo. Taken together, these results highlight the key role play by local D5R in the pathophysiology of Parkinson’s disease and open the way to new pharmacological treatment of the disease. In addition to this property D5R inverse agonist, α-flupentixol is known for its antipsychotic properties as a D2R antagonist. Therefore, when injected systemically, it induced motor disturbances and catalepsy characterized as extrapyramidal motor side-effects. The electrophysiological mechanisms underlying this cataleptic state had never been studied before. Here we have demonstrated that the intra-peritoneal administration of α-flupentixol induced dramatic changes in the electrical activity of the basal ganglia network. Indeed, we observed an increase in firing rate of globus pallidus neurons and a decrease in both STN and substantia nigra pars reticulata, accompanied by a disorganisation of the electrical activity of these two nuclei. This study provides an overview of the electrophysiological mechanisms underlying extrapyramidal motor side-effects induced by antipsychotics, and stresses the fundamental nature of the disorganisation of the electrical activity in the basal ganglia network as a source of movement disorders.